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Abstract

We present a computer program ROTDIF for efficient determination of a complete rotational diffusion tensor of a molecule

from NMR relaxation data. The derivation of the rotational diffusion tensor in the case of a fully anisotropic model is based on a

six-dimensional search, which could be very time consuming, particularly if a grid search in the Euler angle space is involved. Here,

we use an efficient Levenberg–Marquardt algorithm combined with Monte Carlo generation of initial guesses. The result is a

dramatic, up to 50-fold improvement in the computational efficiency over the previous approaches [Biochemistry 38 (1999) 10225;

J. Magn. Reson. 149 (2001) 214]. This method is demonstrated on a computer-generated and real protein systems. We also address

the issue of sensitivity of the diffusion tensor determination from 15N relaxation measurements to experimental errors in the re-

laxation rates and discuss possible artifacts from applying higher-symmetry tensor model and how to recognize them.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In the recent years there has been significant interest

in the characterization of the overall hydrodynamic

properties of biomacromolecules. Because the overall
tumbling provides a dominant contribution to spin-re-

laxation rates, its accurate characterization is essential

for the accuracy of the derived picture of protein dy-

namics [1–4]. In particular, a failure to take the rota-

tional anisotropy into account could result in spurious

conformational exchange motions. Other emerging ap-

plications include structure characterization in multi-

domain systems [5–8] and analysis of protein–ligand
interactions [5,9] and protein association [10].

The information on the overall rotational diffusion of

a molecule is encoded in the rates of nuclear spin re-

laxation that can be measured in various groups in a
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protein. Several experimental and analytical methods

(reviewed in [9,11]) have been developed to determine

the overall rotational diffusion tensor of a protein from

nuclear spin-relaxation data [5,12–20]. Models for

computer prediction of the diffusion tensor based on
atomic structure of a molecule are also available [21,22].

In the most general case, the rotational diffusion

tensor is characterized by six parameters: three principal

values, Dxx, Dyy , Dzz (we assume Dxx 6Dyy 6Dzz), and the

Euler angles a, b, and c relating the principal axes frame

of the tensor to the molecular frame (e.g., pdb file co-

ordinates). Full characterization of a rotational diffusion

tensor requires determination of all six components of
the tensor. The tensor derivation from experimental

data (e.g., 15N relaxation) involves an optimization

search in a six-dimensional space and could be time

consuming. The problem is significantly simplified when

a molecule can be approximated by a sphere or by an

axially symmetric top. This, however, does not apply to

the most general case. For example, our theoretical
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analysis of hydrodynamic properties for a representative
set of 878 protein structures suggests that about 90% of

monomeric prolate proteins have rotational anisotropy,

n ¼ 2Dzz=ðDxx þ DyyÞ, greater than 1.17 and 60% have

the rhombicity, g ¼ 1:5ðDyy � DxxÞ=½Dzz � 0:5ðDxx þ
DyyÞ�, greater than 0.2 (Geraghty et al., in preparation).

Efficient computational methods are, therefore, needed

for the complete tensor determination.

Several computational approaches have been devel-
oped, which employed a combination of simplex and

grid searches [5,9,19], simulated annealing [20], or

Bayesian statistics [23]. In the simplex-based methods

[5,19], the optimization was separated into a simplex

search in a 3D space of the principal values of the tensor

and a grid search in the Euler angle space. This was done

to circumvent the problem of implementing periodic

boundary conditions for the Euler angles in the simplex
algorithm. The angular-grid search turned out to be

time consuming, particularly in the case of a fully an-

isotropic tensor.

Here, we present a software program ROTDIF that

uses a different computational strategy to determine the

full set of diffusion tensor parameters and Euler angles.

A novel feature of the proposed method is that the

optimization search is performed in a full six-dimen-
sional space without separating it into the individual

subspaces for the principal values and the angles. This

is achieved by using a constrained Levenberg–Marqu-

ardt algorithm, which leads to a significant, up to

50-fold gain in the computational efficiency of the

analysis without any loss in the accuracy. We demon-

strate the accuracy and efficiency of the method by

applying it to both synthetic data sets and experimental
data of a real protein. We also analyze the expected

accuracy and precision of the diffusion tensor deriva-

tion depending on the experimental noise in relaxation

data.
2. Results and discussion

2.1. Method description

The determination of the rotational diffusion tensor

of a molecule uses the dependence of the measured spin-

relaxation rates (e.g., for 15N considered here) on the

orientation of a given group (NH bond) with respect to

the principal axes frame of the diffusion tensor (see, e.g.

[3]). Given the structure of a molecule and experimental
relaxation data (15N R1 and R2 and heteronuclear
15N{1H} NOE), the determination of the diffusion ten-

sor parameters is achieved here by minimizing the target

function

v2 ¼
XNr

i¼1

qexp
i � qcalc

i

ri

� �2

; ð1Þ
where Nr is the total number of NH vectors included in
the analysis, parameter q is defined as a ratio of the

transverse and longitudinal relaxation rates,

q ¼ 2R0
2

R0
1

�
� 1

��1

¼ 3

4

J xNð Þ
J 0ð Þ ð2Þ

and ri denotes the experimental error in qi for vector

number i. The value of qexp is directly derived from the

measured relaxation parameters, while qcalc is calculated

using expressions for the spectral densities JðxÞ, de-

pending on the rotational diffusion model (see, e.g.
[19,24]).

The primes in R0
2 and R0

1 in Eq. (2) indicate that these

relaxation rates were modified to subtract the contri-

butions from high-frequency components of the spectral

density as described in [9,24]. The advantage of using the

ratio, R0
2=R

0
1, instead of the individual values of these

parameters is that this ratio is independent, to a first

approximation, of the site-specific variations in the
strength of 1H–15N dipolar coupling and 15N chemical

shift anisotropy. Moreover, in the case of protein core

residues the R0
2=R

0
1 ratio primarily depends on the overall

tumbling and is practically insensitive to fast, sub-

nanosecond backbone dynamics, because the order pa-

rameters of local motions in the numerator and the

denominator of Eq. (2) cancel out [9].

The novelty of the proposed algorithm over the pre-
vious methods [5,9,19,25] is that the optimization search

that minimizes the target function, Eq. (1), is performed

in a full six-dimensional space. Instead of setting the

periodic boundary conditions for the Euler angles we

impose strict boundary conditions and restrict the al-

lowed angle space to a 3D box (cube) of the ð½0�; 180��
intervals for all three Euler angles. Due to the symmetry

properties of the problem [13], this subspace fully rep-
resents all relevant orientations of the tensor frame. Our

analysis showed that it is possible to implement this

approach in simplex by imposing a severe penalty

function for the angle values outside this 3D box.

However, the constrained Levenberg–Marquardt meth-

od turned out to be robust and more efficient in this

case, even when combined with the Monte Carlo

screening of the initial guesses (see below).
The Levenberg–Marquardt algorithm works very

well in practice and has become the standard of non-

linear least-squares optimization. It yields accurate re-

sults when the initial guess is not far from the global

minimum. To avoid being trapped in a local minimum,

we generate a random set of initial guesses and, for each

of them, minimize the target function v2. This is per-

formed in ROTDIF automatically, and the software
then selects only those values of the fitting parameters

that give the lowest value of the target function. Our

extensive testing indicates that a set of �100 random

initial guesses is usually sufficient to find at least one

(usually more than a dozen) solution corresponding to
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the global minimum. The algorithm is so fast that a full
6D search with 100 initial guesses for 50 NH vectors

takes approximately 20 s elapsed time (i.e., about 0.2 s

per guess) on a 1.5GHz Pentium 4 XEON processor. It

takes about 40 s if error calculation is included.

The uncertainties in the derived diffusion tensor

characteristics are calculated using the method of con-

stant-v2 boundaries [26] that incorporates covariance

matrix analysis and Monte Carlo simulation of the fit-
ting parameters, with the acceptance condition of at

least 500 points within the 68.3% confidence region for

the v2-distribution.
To better assess the agreement between the calculated

and the experimental values of q, we also included a

quality factor similar to that previously defined in

[19,27]:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qexp � qcalcð Þ2

D E

2 qexp � qexph ið Þ2
D E

vuuut ; ð3Þ

where the brackets represent averaging over all available
NH vectors. R ! 0 when the calculated and experi-

mental values of q are close to each other.

2.2. Basic features of the ROTDIF program

(1) The ROTDIF program is written in Matlab. It

can run in a user–computer dialog mode or in the au-

tomatic mode. The program automatically performs
data analysis for all three models for the overall rota-

tional diffusion: isotropic, axially symmetric, and fully

anisotropic, and determines the most appropriate model

based on the statistical F test [28]. Because the fit be-

tween a model and experimental data generally im-

proves with the number of adjustable parameters in the

model function, we use the F test to evaluate whether the

decrease in the target function achieved with a larger
number of fitting parameters is statistically significant. A
Fig. 1. Orientations of the 50 generated NH vectors (blue) and the principal ax

as Dk) and fully anisotropic (green, labeled as Dx, Dy , Dz) diffusion models. Th

inferred from the low value (0.0415) of the generalized sampling parameter

Fig. 2. Orientation dependence of q as a result of fitting the computer-genera

The data were fit to a fully anisotropic diffusion model. The fitting surface is u

the orientation of a NH vector with respect to the diffusion tensor frame. The

positions on the surface; data points above the surface are colored red, thos

diffusion model. The large spread of the data around the fitting curve suggests

in (A), onto the h� q plane (/ ¼ 0) illustrates the fact that the spread of the d

/ ¼ 0� and / ¼ 90�, shown as dashed curves in (A). Relaxation data were gen

1 for the anisotropy of 1.4 and rhombicity of 0.8.

Fig. 4. Application of the method to the proximal Ub domain in K48-linke

axially symmetric and (B,C) fully anisotropic models for the diffusion tensor,

for (D,F) axially symmetric and (E,G) fully anisotropic models. (C) A projec

lines in (B) and (C) represent the upper and lower boundaries corresponding
large value of F justifies the inclusion of the additional
terms in the fit. The results are also represented in terms

of the probability P that the observed improvement in

the ðN þ qÞ-parameter fit over the N -parameter fit is

obtained by chance. For the F test statistics to be sig-

nificant at the ð1� aÞ% confidence level, P should be

less than a.
(2) The software extracts NH-vector coordinates

from a user-specified PDB file. If hydrogen atoms are
not present in the PDB file, these will be automatically

built based on the peptide-plane geometry (e.g. [29]).

Alternatively, the user can input NH-vector coordinates

as a separate input parameter.

(3) All results are being automatically saved to a text

file and displayed on screen in the form of text and plots.

Figs. 1–4 in this paper represent outputs of the program,

adapted for publication purposes.
(4) The software also allows visualization of the

principal axes of the derived diffusion tensor. This is

done by generating pseudo-atoms positioned in the or-

igin and along the x-, y-, and z-axes of the tensor. Co-

ordinates of these atoms can be saved in the PDB format

(e.g., appended to a user-specified PDB file), and can

then be viewed using standard protein visualization

software, see examples in our papers [4,7,8].
(5) In the current version of ROTDIF, the method is

implemented for 15N relaxation data. It can be adapted

for analysis of other nuclei, e.g., 13C.
3. Applications

3.1. Computer simulations

To demonstrate the utility of our program, we first

apply it to synthetic 15N relaxation data. This allows

us to compare the results of the analysis with the true,

input rotational diffusion model in order to verify the

accuracy of the computational approach proposed
es of the derived diffusion tensor for the axially symmetric (red, labeled

e orientations of the NH vectors are distributed almost uniformly, and

[29].

ted ‘‘experimental’’ data to anisotropic rotational diffusion models. (A)

sed, because in this model q depends on both h and / angles that define

vertical lines represent deviations of the data points from their expected

e underneath the surface are blue. (B) Data fit to an axially symmetric

that this model is not adequate. (C) A projection of the surface, shown

ata points seen in (B) is within the boundaries corresponding to qðhÞ for
erated as described in the text; the tensor parameters are listed in Table

d Ub2. Orientational dependence of the parameter q obtained for (A)

and the agreement between the experimental and calculated values of q
tion of the hilly surface shown in (B) onto the q� h plane; the dashed

to qðhÞ for / ¼ 0� and / ¼ 90�.

c
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Fig. 3. The agreement between computer-generated ‘‘experimental’’ data for a fully anisotropic diffusion tensor and their back-calculated values using

(A,C) axially symmetric and (B,D) fully anisotropic models of the overall tumbling. (C,D) The difference, qexp � qcalc, divided by the experimental

errors in q, for each NH vector. A ‘‘flat top’’ observed in (A) is a signature of the case when the data for a fully anisotropic diffusion tensor are analyzed

using an oversimplified, axially symmetric model that is not capable of reproducing the dependence of the experimental data on the angle /.
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here. A set of 50 randomly uniformly distributed NH

vectors was generated for this analysis (Fig. 1). Re-

laxation data (15N R1 and R2, and 15N{1H} NOE)

were generated for these vectors assuming an isotropic,
axially symmetric, or fully anisotropic model for the

overall diffusion tensor. The input characteristics of the

diffusion tensor for each model are shown in Table 1,

along with the results of the analyses. We assumed

that the local backbone dynamics are characterized by

the model-free parameters S2 ¼ 0:9 and sloc ¼ 50 ps,

typical for the protein core. A 2% random ‘‘experi-

mental’’ noise was added to all simulated relaxation
data. The results (Table 1) show excellent agreement

between the derived and the input diffusion tensors, when

the proper overall rotational diffusion model is applied.

In each case, we have compared the performance of

our method with that of the previous program DIF-

TENS [19] (with a 1� step grid search) in terms of

accuracy and computation time. For both anisotropic

models, the diffusion tensors obtained by the two
different methods were virtually identical, while the

Levenberg–Marquardt algorithm (ROTDIF) proved to

be much faster (up to �50-fold) than the optimized

grid-search approach (DIFTENS): 21 s versus 17min

elapsed time, for the fully anisotropic model. Of the

100 initial guesses used for ROTDIF, 80 resulted in

the global minimum characterized by the least value

of the target function and 20 led to three other values
of v2 representing local minima. Note that, in princi-

ple, this optimization strategy also provides an im-
provement in the accuracy of the tensor determination

because none of the fitting parameters is limited to a

grid.

3.2. Characteristic signatures of an inadequate diffusion

model

Because the proper diffusion tensor model is not

known a priori, it is important to be able to verify that

the applied diffusion model is adequate. While the

presence of rotational anisotropy is usually readily rec-

ognizable, and significant attention has already been
paid in the literature to how to distinguish it from the

isotropic tumbling, the presence of the rhombic com-

ponent of the diffusion tensor could be more difficult to

identify. Here, we use our computer-generated data to

reveal the characteristic signatures of a fully anisotropic

rotational diffusion.

We will discuss here in detail the application of an

axially symmetric diffusion model to relaxation data
generated for a fully anisotropic diffusion tensor with

rhombicity of 0.8 (see Table 1). In this case the target

function had two global minima, which were very close

in their v2 values (147.7 and 158.7) and represented

prolate and oblate approximations of the tensor, re-

spectively. The presence of two minima has been shown

[15] to be a general feature when approximating a truly

anisotropic system by an axially symmetric tensor. The
prolate solution was chosen based on a lower value of

the target function. Naturally, the two-minima problem



Table 1

The results of the diffusion tensor determination from computer-generated spin-relaxation data for various input and applied diffusion tensor models

Model Dxx
a Dyy

a Dzz
a ab bb cb scc nd ge v2 F f P g Rh

Input: iso 2.08 2.08 2.08 — — — 8.0 0 0

Full 2.05 2.07 2.12 158 50 78 8.00 1.03 0.371 39.9 0.07 0.93 0.68

(0.07) (0.07) (0.08) (53) (41) (95) (0.14) (0.04) (0.3)

Axial 2.06 2.06 2.12 155 48 — 8.00 1.03 40.1 1.24 0.3 0.68

(0.03) (0.03) (0.07) (32) (53) (0.12) (0.03)

Iso 2.08 2.08 2.08 — — — 8.01 43.3 0.7

(0.01) (0.01) (0.01) (0.02)

Input: axial 1.84 1.84 2.57 70 60 — 8.0 1.4 0

Full 1.83 1.87 2.55 71 58 33 8.0 1.38 0.094 40.1 0.8 0.45 0.29

(0.10) (0.09) (0.2) (5) (3) (52) (0.3) (0.12) (0.02)

Axial 1.85 1.85 2.55 72 59 — 8.01 1.38 41.6 125 3.7· 10�22 0.29

(0.02) (0.02) (0.07) (2) (3) (0.1) (0.04)

Iso 2.08 2.08 2.08 — — — 8.03 381 0.72

(0.01) (0.01) (0.01) (0.05)

Input: full 1.79 1.89 2.57 70 60 170 8.0 1.4 0.2

Full 1.81 1.88 2.57 71 60 150 8.0 1.39 0.15 35.6 2.3 0.12 0.22

(0.07) (0.07) (0.14) (4) (3) (32) (0.2) (0.08) (0.02)

Axial 1.84 1.84 2.57 71 61 — 8.0 1.39 39.3 137 6· 10�23 0.24

(0.03) (0.03) (0.07) (3) (3) (0.1) (0.04)

Iso 2.08 2.08 2.08 — — — 8.02 390 0.72

(0.01) (0.01) (0.01) (0.05)

Input: full 1.64 2.03 2.57 70 60 170 8.0 1.4 0.8

Full 1.62 2.03 2.56 72 59 166 8.04 1.40 0.83 28 94 1.3· 10�16 0.16

(0.04) (0.04) (0.05) (4) (2) (6) (0.1) (0.04) (0.04)

Axial 1.82 1.82 2.58 72 61 — 8.03 1.42 147.7 40 5.7· 10�13 0.40

(0.05) (0.05) (0.14) (5) (7) (0.25) (0.07)

Iso 2.07 2.07 2.07 — — — 8.05 538.1 0.72

(0.02) (0.02) (0.02) (0.06)

Input: full 1.59 2.08 2.57 70 60 170 8.0 1.4 1.0

Full 1.56 2.07 2.61 70 59 170 8.01 1.44 0.97 52.4 80 2.1· 10�15 0.19

(0.04) (0.05) (0.06) (4) (3) (6) (0.1) (0.04) (0.06)

Axial 1.81 1.81 2.63 69 62 — 8.0 1.46 243 29 9.2· 10�11 0.44

(0.06) (0.06) (0.17) (7) (9) (0.33) (0.09)

Iso 2.08 2.08 2.08 — — — 8.03 709 0.73

(0.02) (0.02) (0.02) (0.07)

Numbers in the parentheses represent standard errors in the derived parameters. Here, ‘‘iso,’’ ‘‘axial,’’ and ‘‘full’’ stand for the isotropic, axially

symmetric, and fully anisotropic models, respectively. The input lines list parameters for the input model, as indicated.
a The principal values of the diffusion tensor, in 107 s�1.
b The Euler angles, in degrees, define the orientation of the principal axes frame of the diffusion tensor relative to the coordinate frame of the

generated set of NH vectors.
c The overall rotational correlation time, sc ¼ 1=ð6DisoÞ, in nanoseconds.
d The anisotropy of the tensor, see Section 1.
e The rhombicity of the tensor, see Section 1.
f The F value for the F test comparing the current model with a simpler one (in the row below): fully anisotropic versus axially symmetric or

axially symmetric versus isotropic model. Large values of F justify the use of a more complex model.
g The probability that the improvement in the fit when applying a more complex model has occurred by chance.
h The quality factor, Eq. (3).
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disappeared when the data were treated using a fully

anisotropic model. Moreover, the target function for the

fully anisotropic model was considerably lower

(v2 ¼ 28), which is generally interpreted as a better fit.

This is also confirmed by the F test (F ¼ 94, Table 1)

indicating that there is a 10�16 probability that the ob-

served decrease in v2 was obtained by chance.

Prior to comparison of the results obtained for dif-
ferent diffusion models, it is instructional to consider the

orientational dependence of the parameter q. The 15N
relaxation rates (hence the parameter q) depend on the

orientation of the NH bond vector with respect to the

principal axes frame of the tensor. This orientation is

defined here by the polar angle h and the azimuthal

angle /. The theoretical dependence of q as a function of

h and / can be represented by a hilly surface shown in

Fig. 2A for a fully anisotropic diffusion tensor (prolate).

The overall shape of the surface reflects symmetry
properties of q: qðh;/Þ ¼ qð180�� h;/Þ ¼ qðh;�/Þ ¼
qðh; 180�� /Þ ¼ qðh;/� 180�Þ, stemming from the fact
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that the relaxation parameters are not sensitive to the
directionality (sign) of the NH-vector coordinates. The

actual heights of the ‘‘hills’’ and depths of the ‘‘valleys’’

(saddle points) depend on the principal values {Dxx, Dyy ,

Dzz} of the diffusion tensor. The difference between the

hills and the valleys depends on the rhombicity of the

tensor and disappears when Dyy ¼ Dxx, i.e., for an axially

symmetric tensor, whereby q does not depend on the

angle /. The whole surface flattens and becomes a
horizontal plane in the isotropic case (Dxx ¼ Dyy ¼ Dzz).

The quality of the data fit to anisotropic diffusion

models is illustrated in Fig. 2 depicting the angular de-

pendence of the relaxation data. The fully anisotropic

model is in excellent agreement with the ‘‘experimental’’

data (Fig. 2A) that fit nicely into the hills and valleys of

the qðh;/Þ-surface.
The axially symmetric diffusion model yields reason-

ably accurate values of the anisotropy of the tensor and

of the overall correlation time and predicts the correct

orientation of the z-axis of the diffusion tensor (Table 1,

Fig. 1). However, it shows a significant vertical spread of

the q values around the fitting curve (Fig. 2B), most

pronounced around its maximum (at h ¼ 90�). This is

because applying an axially symmetric model to the fully

anisotropic case amounts to fitting data to a surface with
no hills or valleys in the /-dimension. As a result, the

data points located in various parts (hills and valleys) of

the qðh;/Þ surface (Fig. 2A) now appear spread in the

vertical direction around the qðhÞ fitting curve. The up-

per and lower boundaries of this area are given by / ¼ 0�
and / ¼ 90� and correspond to those cases when the NH

vector is orthogonal to the y- and x-axis, respectively, of

the diffusion tensor (cf. Fig. 2A). A projection of the
qðh;/Þ-surface onto the h� q plane (/ ¼ 0), shown in

Fig. 2C, illustrates this issue by showing that the data

points spread in Fig. 2B indeed fall within these

boundaries, indicated by the dashed curves in Fig. 2A.

This observation suggests that a vertical spread of data

points in the area around h ¼ 90� in the axially sym-

metric fit is a characteristic signature of the difference

between Dxx and Dyy and can be used as an indicator that
an axially symmetric model is inadequate.

Another characteristic signature of the case when an

axially symmetric model is inadequate is illustrated in

Fig. 3A depicting the correlation between the experi-

mental and back-calculated data. The correlation plot

has a characteristic ‘‘flat top’’: the upper limit of the

calculated q values is always truncated compared to the

maximal experimental data. This is because in the axi-
ally symmetric model, the fitting curve lies in the middle

between the boundaries defined by / ¼ 0� and / ¼ 90�.
This curve sets the upper limit for the calculated values

of qðhÞ at h ¼ 90�: these values cannot reach the hilltop

as they do in the fully anisotropic model. The qcalc val-
ues predicted using fully anisotropic model are in ex-

cellent agreement with the ‘‘experimental’’ data (the
correlation coefficient r ¼ 0:98, the quality factor
R ¼ 0:16, Figs. 3B and D) whereas the agreement is

noticeably worse (r ¼ 0:84, R ¼ 0:4) for the axially

symmetric model (Figs. 3A and C).

In the opposite situation, when a more complex, fully

anisotropic model was applied to relaxation data gen-

erated for the axially symmetric model (Table 1), the

results show a large experimental uncertainty in the

Euler angle c that defines the orientation of the x- and y-
axes of the tensor. The F test indicated that the fully

anisotropic model was not statistically better than the

axially symmetric model: there was a 45% probability

that the observed marginal decrease in the v2 was ob-

tained by chance. In addition, there was no improve-

ment in the quality factor (R ¼ 0:29) compared to the

axially symmetric model. Similar conclusions hold when

the data generated for isotropic model are treated as-
suming rotational anisotropy (Table 1).

3.3. Application to a real system: ubiquitin domain in a

di-ubiqutin chain

To demonstrate the ROTDIF program on a real

protein and to illustrate the ideas outlined above, here we

apply it to the proximal ubiquitin (Ub) domain in the
context of the K48-linked di-ubiquitin (Ub2) chain [7].

Other applications of the program can be found in [4,8].

The NMR data, 15N R1;R2, and
15N{1H} NOE, were

measured at 14.1 T as described in [7]; the average ex-

perimental precision in the relaxation data was 2%. Our

chemical shift perturbation data and residual dipolar

coupling measurements indicate that the backbone

structure of each Ub domain is not significantly per-
turbed in Ub2, therefore protein coordinates for mono-

meric Ub [30] will be used in the analysis. Fifty-four out

of the 73 observed NH groups were used for the rota-

tional diffusion tensor determination. Residues that ex-

hibited noticeable chemical shift perturbations,

significant conformational exchange, or rapid motion on

the fast timescale were excluded from the analysis. The

results of the analysis are presented in Table 2 and Fig. 4.
First we applied an axially symmetric diffusion tensor

model. The target function showed two global minima

corresponding to a prolate (v2 ¼ 190) and an oblate

(v2 ¼ 194) approximations of the tensor. The depen-

dence of the parameter q on the NH vector orientation

is shown in Fig. 6A for the prolate solution, the agree-

ment between the experiment and the model is presented

in Fig. 4D. Overall, the axially symmetric model could
not reproduce well the experimental data. Consistent

with the discussion above, the existence of the two

minima, the observed vertical spread of the data

(Fig. 4A), and the characteristic ‘‘flat top’’ in Fig. 4D, all

indicate that the tensor has a significant rhombic com-

ponent. Indeed, the agreement between the experiment

and the theory improved significantly (Figs. 4B and E,



Table 2

Rotational diffusion tensor of Ub2 derived from 15N relaxation data measured for the proximal Ub domain

Model Dxx Dyy Dzz a b c sc n g v2 F P R

Full 1.75 2.0 2.31 105 112 135 8.26 1.23 0.865 97 21 2.8 · 10�7 0.36

(0.04) (0.05) (0.06) (6) (6) (10) (0.1) (0.04) (0.1)

Axial 1.89 1.89 2.25 96 107 — 8.28 1.19 190 15 4.2 · 10�7 0.55

(0.04) (0.04) (0.12) (11) (10) (0.2) (0.06)

Iso 2.01 2.01 2.01 — — — 8.29 377 0.73

(0.01) (0.01) (0.01) (0.04)

Numbers in the parentheses represent standard errors in the derived parameters. The meaning of all parameters and the units are the same as in

Table 1. The atom coordinates were taken from the NMR structure of mono-Ub (PDB entry 1D3Z.pdb) [30].

Fig. 5. Illustration of the expected imprecision of the derived diffusion

tensor parameters as a function of experimental noise in 15N relaxation

parameters. The plots represent relative errors (in %) in (A) Dk and (C)

D? and the absolute errors (in degrees) in (B) a and (D) b for various

levels of rotational anisotropy, as indicated. The ‘‘experimental’’ data

were generated and analyzed using an axially symmetric model. The

input values for the orientation of the tensor (a ¼ 70�, b ¼ 60�) and the

sc (¼ 8 ns) were kept constant. The level of experimental noise in re-

laxation data was from 1 to 10%. These data indicate that the orien-

tation of the tensor (angles a and b) is more sensitive than its

magnitude (Dk, D?) to experimental errors and/or to the degree of

anisotropy of the tensor. To reduce the crowdiness of the plots, only

data for n ¼ 1:08, 1.2, and 1.4 are shown in (A) and (C).
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Table 2) when a fully anisotropic model was used. Here,

v2 ¼ 97; and the probability that this improvement in

the fit is due to chance is P ¼ 2:8 · 10�7. The orienta-

tional dependence of q that looks like a significant

spread of data in Fig. 4A, now fits nicely the hilly sur-

face (Fig. 4B) that takes into account an additional

degree of freedom (angle /) describing NH vector ori-

entation (Figs. 4B and C).

3.4. Precision and accuracy of the diffusion tensor

determination

Knowing the limits of the accuracy and precision in

the NMR-derived diffusion tensors is critical for their

use for protein dynamics analysis and for domain ori-

entation in multidomain systems. Equipped with an ef-
ficient method of full diffusion tensor analysis, we are

now in a position to explore these issues. Here, we focus

only on the inaccuracy and imprecision in the tensor

determination caused by the experimental noise; the

effect of limited orientational sampling due to a non-

uniform distribution of the NH vectors has been dis-

cussed elsewhere [29].

To assess the dependence of the derived rotational
diffusion tensor on the quality of the experimental data,

we used the same 50 randomly uniformly oriented NH

vectors as above, and generated multiple synthetic sets

of 15N relaxation data assuming an axially symmetric or

a fully anisotropic diffusion tensor. The sc and the ori-

entation of the tensor were the same as in Table 1; the

levels of experimental error ranged from 1 up to 10%.

The anisotropy varied from 1.04 to 1.4 for an axially
symmetric diffusion model. For a fully anisotropic

model, where both the anisotropy and rhombicity could

vary, we considered four different possibilities. First, the

anisotropy was kept constant (n ¼ 1:3) and the rhomb-

icity varied from 0.1 to 1.0. Then we varied the anisot-

ropy (from 1.05 to 1.4) for three fixed values of the

rhombicity (g ¼ 1:0, 0.4, and 0.2). Five hundred sets of

relaxation data (R1, R2, and NOE) were generated for
each combination of the experimental error, anisotropy,

and rhombicity. Each generated data set was analyzed

assuming a proper diffusion tensor model. The precision

of the derived tensor was computed as the standard

deviation over the 500 resulting tensors, while the
accuracy was assessed as the deviation of the mean of

these tensors from the true (input) value.

3.4.1. Precision

The derived uncertainties in the tensor parameters are

depicted in Fig. 5 for the axially symmetric model. Here,

the orientation of the tensor (angles a and b) turned out

to be more sensitive than its magnitude (described by Dk
and D?) to the experimental errors and/or the degree of

anisotropy. For a given experimental error, the uncer-

tainties in the magnitude of the diffusion tensor increase

almost linearly with the decrease in the anisotropy, while

the errors in the angles increase faster, as a polynomial

function. Similar behavior was observed for the fully

anisotropic tensor model. For example, based on our

analysis for a typical 2% level of experimental errors in
R1, R2, and NOE, the expected uncertainties in the Euler



Fig. 6. The expected inaccuracy in the c angle as a function of exper-

imental noise and of the rhombicity of the diffusion tensor, for a

constant anisotropy of 1.3. The inaccuracy was computed as

jcexp � hccalcij, where h� � �i denotes averaging over the set of 500 tensor

values derived from fitting 500 sets of synthetic relaxation data for each

combination of the rhombicity and the level of experimental noise.
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angles a and b are 4� and 3�, respectively, assuming an

axially symmetric model with small anisotropy of 1.2.

The errors in Dk and D? were at 0.6 and 1.2%, respec-

tively. These uncertainties increase for less precise ex-
perimental measurements. These data emphasize that

the orientation of the diffusion tensor is significantly

more sensitive to measurement errors than its principal

values. The same tendency was observed in the case of a

fully anisotropic tensor (data not shown). Here, the

angle c turned out to be most sensitive to experimental

errors. Assuming the same levels of rotational anisot-

ropy and experimental errors as above, the uncertainties
in c varied from 17.5� to 5.3� for the range of rhomb-

icities from 0.2 up to the maximum value of 1.0, while

the errors in a and b (4–6� and 2.5–2.2�, respectively)
and in Dxx, Dyy , and Dzz (1.3–1.2, 1.2–1.15, and 1.2–

1.14%, respectively) remained practically unaffected.

3.4.2. Accuracy

The experimental noise reduces the sensitivity of the
analysis, thus making the tensor determination less ac-

curate, even in the case when a correct diffusion model is

applied. Our analysis indicates that, overall, the expected

accuracy of the diffusion tensor determination is very

good. The observed deviations from the input values

were below 0.4% for the principal values of the tensor

and below 1� and 0.5� for the angles a and b, respectively,
for the range of tensor anisotropies from 1.1 to 1.4 and
the rhombicities from 0 to 1, assuming a 2% level of

experimental noise in the relaxation data. The inaccu-

racies in these parameters increased with the experi-

mental errors and, for example, reached 1.4% (Dxx), 0.8%
(Dyy , Dzz), and 2.8� (a; b) at a 5% experimental noise level
and the lowest tensor anisotropy of 1.1. Here, again, for

a fully anisotropic tensor the angle c is the least accu-

rately determined parameter (Fig. 4E). This angle devi-

ates significantly from its input value when the

rhombicity and/or anisotropy are small, hence the ori-

entation of the x- and y-axes becomes poorly defined.

3.4.3. Sensitivity

Based on the error analysis we have also addressed

the sensitivity of the diffusion tensor determination. In

particular, we estimated the lower limits for the anisot-

ropy and rhombicity of the tensor such that the tensor’s

orientation can be determined with a better than 10�
uncertainty. Based on these criteria, the lowest identifi-

able anisotropy for an axially symmetric tensor was

n ¼ 1:10, assuming sc of 8 ns and a 2% level of experi-
mental errors. For a fully anisotropic model, in order to

have a less than 10� uncertainty in the c angle, the an-

isotropy had to be greater than 1.12 (for g ¼ 1:0) or

greater than 1.2 (g ¼ 0:4), for the same level of experi-

mental errors and sc. The lowest identifiable rhombicity

was 0.3, assuming similar precision criteria (including

angle c) and the tensor anisotropy of 1.3.
4. Conclusions

In the present paper, we have demonstrated a novel

computational method for efficient and accurate deter-

mination of the rotational diffusion tensor of a molecule

from spin-relaxation data. This is achieved via a six-di-

mensional optimization search using a constrained
Levenberg–Marquardt algorithm combined with Monte

Carlo generation of initial guesses. This algorithm is

robust and provides significant time saving compared to

our previous approaches. This method is implemented

in our computer program ROTDIF. The method is

applied here to real experimental data on ubiquitin do-

main in di-ubiquitin and to computer-generated data for

isotropic, axially symmetric, and fully anisotropic dif-
fusion tensors. The analysis of computer-generated re-

laxation data made it possible to identify characteristic

signatures of data treatment using inadequate rotational

diffusion models and to explore the effect of experi-

mental errors on the accuracy and precision of the

derived diffusion tensor.
Note added in proof

Further details of the analysis presented here and its

application to interdomain orientation in di-ubiquitin

can be found in D. Fushman, R. Varadan, M. Assfalg,

O. Walker, Determining domain orientation in macro-

molecules by using spin-relaxation and residual dipolar
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coupling measurements, Progress NMR Spectroscopy
(2004) in press (available online as Articles in Press).
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